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NOTATIONS

A Constant in Error Representation

C Heat Capacity

E i  Error Norm Defined in Equation (13); (i = 1, 4)

fi Known Function on i ( i = I and 3)
in the Neumann Condition

h i  Heat Film Coefficient on i( = I and 3)
in the Robin Condition

J Heat-Mechanical Energy Conversion Factor
(= 9336 in lbf/Btu)

Ji Juncture Boundary ( i = 1,2)

k i  Thermal Conductivity in (i ( i = !,2,3)

L Length of Bearing Pad

n Index of Error

(Oxy) Rectangular Coordinate Defined in Figure 1

Pe Peclet Number

T Temperature in Fahrenheit

T i  Temperature in Subdomain Qi C i = 1,2,3)

T Test Function in Weak Formulation

T Approximate Solution for Temperature

I Velocity Vector

(u,v) Velocity Component in the x and y-axis

Y Coefficient of Convective Term

Boundary of Subdomain Qj( I = 1 and 3)

Inlet (Upstream) Boundary of Q

rZD Outlet (Downstream) Boundary of Q

P Density of Lubricant
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ABSTRACT

Galerkin's finite element method is applied to a two-dimensional heat convection-

diffusion problem ariing in the hydrodynamic lubrication of thrust hearings used in

naval vessels. A parabolized thermal energy equation for the lubricant, and thermal

diffusion equations for both bearing pad and the collar are treated together, with

proper juncture conditions on the interface boundaries. It has been known that a

numerical instability arises when the classical Galerkin's method, which is equivalent

to a centered difference approximation, is applied to a parabolic-type partial

differential equation. Probably the simplest remedy for this instability is to use

a one-sided finite difference formula for the first derivative term in the finite

difference method. However, in the present coupled heat convection-diffusion problem

in which the governing equation is parabolized in a subdomain (lubricant), uniformly

stable numerical solutions for a wide range of the Peclet number are obtained in the

numerical test based on Galerkin's classical finite element method. In the present

numerical computations, numerical convergence errors in several error norms are

presented In the first model problem. Additional numerical results for a more

realistic bearing lubrication problem are presented for a second numerical model.

ADMINISTRATIVE INFORMATION

The work reported here was in support of the Tribology Program, which is an

interdepartmental effort, under the David W. Taylor Naval Ship Research and Development

Center's (DTNSRDC) Independent Research Program Task Area ZR-000-01-01, Work Unit

2832-121-50.

INTRODUCTION

The main objective of the present DTNSRDC on-going research in the Tribology

Program at DTNSRDC is to develop a reliable tool to predict the behavior of thrust



bearings used in naval vessels over a wide range of operating conditions, with regard

to both hydrodynamic and boundary lubrication. The first step toward this goal is to

improve the hydrodynamic lubrication prediction. In this first-step approach, an

immediate improvement over previous investigations is a full coupling of the thermal

energy equation in the lubricant and the heat diffusion in the surrounding bearing

and the collar. In this approach, a temperature variation is allowed across the

lubricant film thickness and proper matching conditions are imposed on the interface

boundaries between the lubricant and adjacent solids. In the present analysis, the

standard thermal energy equation is parabolized by assuming that the ratio of the

diffusion term to the convection term along the flow direction is of small order.

It has been known that for a parabolic-type partial differential equation an

instability arises when the classical Galerkin method is applied, since this method

is equivalent to the centered difference approximation. Probably the most extensively

studied problem of this type is solution of the well-known boundary layer equations.

In the boundary layer equations, most often a one-sided finite difference formula

is used, which is equivalent to choosing the basis for the test function space to be

different from that for the trial function space in the finite element method. There

are many reports describing the introduction of various weighting functions in the

innner product or the choice of a test function basis different ( that is asymmetric)

from the trial function basis (1,2,3,4,5,6,7 1. The choice of a test function basis

different from the trial function basis plays a role in controlling the degree of

"upwinding" to maximize accuracy. Recently, extensive studies have been made for

general convection-diffusion equations. However, rigorous investigations into the

control of the degree of upwinding are limited to a simple one dimensional model

problem with constant coefficients. For more general situations, maximization of

accuracy by controlling the degree of upwinding is not straightforward. Therefore,

2



it is desirable to have a simple numerical scheme which is uniformly stable over

a wide range of values of the Peclet number.

In this report numerical results are obtained by the classical Galerkin method.

The present numerical scheme gives uniformly stable results over a wide range of

Peclet number for the parabolized thermal energy equation in the lubricant. The present

numerical scheme is equivalent to the centered difference approximations for both the

first and second derivative terms in the original differential equation.

MATHEMATICAL MODELLING OF THE PRCBLEM

The computation domain consists of three rectangulp iubdomains, having heights

HI, H2, H3, and length L as shown in Figure I. However, choice of actual boundary

geometry is general ( not necessarily rectangular domai in the present method. The

upper, middle, and lower subdomains are the bearing pad - lubricant, and the bearing

collar, denoted by fl 1 , Q, , and Q3 , respectively. A rectangular co-ordinate system

is used, the y-axis pointing upward and the x-axis pointing toward the right-hand side.

The origin is taken at the mid-point of the left-hand side vertical boundary of the

lubricant. The boundary of each subdomain is as shown in Figure 1,

?()-- = F % Ji (i = 1 and 3)

(I)
0.= Fv U F2.D J V j U 1

()

Here the flow velocity U is also shown in Figure 1.

In the present numerical test, we ignore the convection term in the solids, i.e.,

1 and Q3 , by assuming they are stationary. The thermal conductivity, k1 (i=I,3)

is assumed constant in each subdomain. In the subdomain Q2 (the lubricant), the

velocity distribution is specifed a priori, hence the heat generating source term

3



r H,

J2

r2D. H2
F2"2

FH3

Fig. I Boundary Configurations

(x,y) is known. The density p and the specific heat C of the lubricant are

also assumed to be constants in 0 2 • Furthermore we assume that the diffusion term

is much smaller than the convection term along the x-axis, and that the convection

term is much smaller than the diffusion t.'rm in the y axis. From these assumptions the

original thermal energy equation, of an elliptic type in the lubricant, can be paraboized

as follows. Let the temperature Ti(J-l,2,3) be defined in each corresponding subdomain

. Then the thermal energy equation in each subdcmain can he written as

4



-Ki V* = 0 inn,-, (i - 1 and 3)

- j< 2.a.+Cy) In C), (2)

where Y = Cpu, and .= and A is the dynamic viscosity. As mentioned

before we assumed that the term I z /Ce j oCI) and ICevT/k .'T = ol)

in the thermal energy equation in Qj, where u and v are, the velocity components

along the x-axis and y-axis, respectively.

Since the thermal energy equation in f) is parabolized, we impose the

boundary condition only on the upstream boundary, Flu , and proper juncture

conditions on J, and J2, i.e.,

T2= T on F"V (3)
0

where the temperature of incoming lubricant, T , is specified. At the juncture
0

surfaces J, and J2 we require continuity of the temperature and its normal heat

flux, i.e.,

T 1 = T . and k , Tly = k2  T ,, on J
1 (4)

and T z  = T . and k .T y = k -T y on J
2

In the first numerical model problem, the following three standard types of

boundary conditions on F, and 5 are treated specifically for testing numerical

convergence:

(I) Dirichlet type; T = T on r- (I = I and 3) (5)
i 0

where T. is specified.

5



(ii) Neumann type; K. on f.i (I -I and 3) (6)

where f (i-1 and 3) is specified.
i

(iii) Robin type; -- +h T ='HiT on Ti (i = 1 and 3) (7)

where the heat transfer film coefficient h i (i=l and 3) and the ambient oil temperature

distribut!in T (x,y) along -, and Fa are specified. Here we assume the boundaries,
0

and r3 are in an oil bath with an ambient oil temperature To(x,y). It should

be noted here that the boundary condition on the downstream boundary (outlet) of

lubricant, r=p , is not specified but is obtained as a part of the solution. This

is because the original elliptic equation has been reduced to a parabolic equation.

For the purpose of the error and convergence test in the first model problem, we

take H, = 11z = H3 = 2, k%/ k z = 3, kt = k 3 = 3, h, 
= h3 = 1, and the juncture boundaries

J( and Jjare y = + 1, respectively. We begin with the exact solution given by a simple

polynomial function in each subdomain as follows;

T= -z x + x +.I y- 3 y +c )

T2 ( Y) =+ x +' + Xy+ y

From a given arbitrarily specified function of Y , one can easily compute the heat

generation j by Eqs (2) and (8) as

4A= + 2. (9)

6



The three different types of boundary conditions in this model problem

are computed from the known exact solutions given in Eq(8). For example, with the Robin

type condition, h i =1 (i=1,3), To(x,y) was computed from Eq (8) as

T- - T i T on (i = and 3)

and (10)

o yon T2

In the second model problem, we only treat the Robin boundary condition

on [t and F to simulate a more realisitic experimental condition. For this case,

the geometry of the bearing pad and collar and the lubricant film thickness are

chosen as an analogous model in two dimensions corresponding to the three-dimensional

experimental condition.

GALERKIN'S METHOD AND NUMERICAL PROCEDURE

Before we describe Galerkin's finite element method applied to the model

problem formulated in the previous section, it is convenient to introduce a single

continuous temperature function T(x,y), defined in the entire domain, Q =!QUQZ% Q3

as follows;

T(x,y) = Ti(x,y) in C (1=1,2,3). (11)

To construct the bilinear functional in weak form, we first introduce the test

function T* in the test function space, and next define the inner product of the

original partial differential equations in (2) and the test function T*. By

integrating by parts the inner product reduces to

7



IVT T~jy+ 1< T J)4I+tk T,:

+ ,'6TT*JSI5 4h 3T*~s TAxy(2

2 2

+-,KT.T *s + T,T- S

where the trial function T* = 0 on T- and the trial function T is chosen so that

the essential condition T = To on Fu is satisfied. Eq (12) is a weak form for the

Robin condition. For the Dirichlet type condition on F and [- , the line integrals

along F, and F3 in Eq(12) are not present. On the other hand the trial function should

satisfy the Dirichlet conditions and the test function is chosen to be zero on F and 3

In the case of the Neumann type condition, the boundary integrals along yT and T_,

appearing on the left-hand side of Eq (12) should not be present and h To in the

integrands of the boundary integrals along riand t 3 , on the right-hand side of Eq

(12), should be replaced by fi(x,y), (i=l and 3).

It is of interest to note that the Juncture conditions on J3 and J given

in Eq (4) are satisfied as natural conditions in Galerkin's functional equation

gijen above. In the numerical computations an isoparametric linear element is used

as the basis for both trial and test functions throughout the present computations.

This choice of basis function is equivalent to the centered finite difference

approximation. In a straightforward manner, the bilinear form in Eq (12) is reduced

to a set of algebraic equations. The coefficient matrix obtained is not symmetric

but still has a banded structure. The asymmetry Is due to the presence of the



convective term in a subdomain . The Gaussian elimination method is used to solve

the reduced matrix equation.

NUMERICAL CONVERGENCE TEST IN THE FIRST MODEL

An extensive numerical test of the convergence has been made in the first

model problem. To test numerical convergence of the present numerical scheme,

we define the error, E (il,4), in four different ways using the known exact
i

A
solution T given in Eq (8) and the finite element numerical solution T(x,y) as

follows:

E = 1IT -T Iho

T 3 (13)

E3  11V- )IIL

E4= VIT-til,

where 1 ,0 and 0 !12 are the well-known max norm and L. norm, and defined as

tIT- TII00= Ynax IT T
(14)

11 T -T12 -T^)~~"' y
and where k - ki in a-, (i1,2,3)

In the finite element mesh subdivisions, Ax/ Ay -1 is used throughout

the first model problem, where Ax, and Ay are the lengths of the finite element

along the x- and y- axes respectively (i.e., a square element is used for this model

problem). Ten different sizes of uniform square elements are tested in the range of

1111 1 1 [i9



C- A !/ : 20 . The specific mesh-subdivisions tested are given in

Table 1. In the present model problem, the computations are made for three values

of Peclet number: Pe =Y H2./2 = 0.01, 1, and 100.

Table 1 Ten different finite element subdivisions used for the error test.

Test case (1) 1 2 3 4 5 6 7 8 9 10

1 2 4 6 8 10 12 14 16 18 20

J 3 6 9 12 15 18 21 24 27 30

EL 6 24 54 96 150 216 294 384 486 600

N 12 35 70 117 176 247 330 425 532 651

i ,11g 17 23 29 35 41 47 53 59 65

0IM 108 595 1610 3395 6160 10127 15510 22525 31388 42315

I = Number of element along the x-axis
J = Number of element along the y-axis
EL - Total number of elements
N - Total number of nodes
MB - Bandwidth (asymmetric)
DIM = Core memory space for the coefficient matrix

If we assume that the error behaves like E c-c(A Y) n i=1,2,3,4) as

the limit Ax-- 0, then we may represent the error as

where A is constant and I is defined in Table I. By taking the log of Eq (15), we

obtain

(16)

From our numerical results for ten different finite-element mesh subdivisions,

10



we have plotted the curve of the points ( -in A , In E1 ) shown in Figs. 2

through 4. From the two finest finite element subdivisions, the values of

index n and the constant A are obtained for three different values of the Peclet

number, Pe, and also for three types of boundary conditions on I- and f-3 . The results

are given in Table 2 and 3. In Table 2 the values of n for E 2 and E) are almost

-l
one, i.e., the corresponding convergence error is linear, as a function of (I) for

all three types of boundary conditions and all three Peclet numbers tested except

for Pe -100 in the Neumann boundary condition. It is surprising to see that the

the convergence of the E, error is accelerated as the Peclet number increases

- this is contrary to our expectation. It is also difficult to draw any conclusion

on the behavior on the convergence of the error E 4 as the Peclet number increases.

In Table 3, the constant A for E increases as the Peclet number increases with

all three types of boundary conditions on F1  and t . However, the constant A

for F. and E 3 does not vary much for all three types of boundary conditions and

for the three values of Peclet numbers.

From the results shown in Figure 3 and Table 2 and 3, the present numerical

evidence shows uniform convergence of the present numerical scheme. However, a

rigorous mathematical error analysis and convergence proof is still open for the class

of parabolic-elliptic coupled problem treated here.

II
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Table 2. The Values of n in various Error Norrs for Three
Peclet Numbers, P

e

Boundary p I
Condition Pe E1 E2 3

0.01 1.0038 1.0004 1.0000 2.0000

Robin 1 2.0607 1.0004 1.0000 1.9971
100 3.2114 1.1082 1s1482 3.2273
0.01 1.2871 1.0004 1.0000 1.9985

Neumann 1 2.0098 1.0004 1.0000 1.9834

100 3.6481 1.3138 1.3709 4.1813

0.01 .9175 1.0004 1.0000 2.0000
I 2.0366 1.0003 .9999 2.0003
100 2.1011 1.0009 1.0008 1.9957

Table 3. The Values of Constant A in various Error Norms for

for Three Peclet Numbers, Pe

Boundary p F E E F
Condition e 2 4

0.01 .2481E-01 .476)E+02 .2993E+02 .1721E+02
Robin I .7006E+01 .4769E+02 .3005E+02 .1,126E+02

o00 .2580E+04 .6760E+02 .4908E+02 .1601E405

0.01 .8260E-01 .4761E+02 .2993E+02 .I14)E+02

Neumann 1 .5876E+01 .4769E+02 .3005E+02 .1641E+02

100 .1299E+05 .1281E+03 .9813E+02 .12"J7E+06
0.01 .1740E-01 .4761E+02 .2993E,02 .1,20E+02

1 .6339E+01 .4768E+02 .3004E+02 .1,47E+02
Dirichlet 100 .1472E+02 .4823C+02 .30WE+02 .18o6E+02

18



RESULTS FOR A SECOND MODEL PROBLEM

For the second model problem, the following geometrical and material data

are used:

H1 = H3 = 0.75 inch

H2= 0.001 and 0.0001 inch

L = 2.5 inch

u,= 9.55 inch/sec and 47.75 inch/sec

C = 0.5 Btu/ibm/"F

k,= k 3 = 26 Btu/hr/ft/*F

k= 0.075 Btu/hr/ft/*F

T, = 100 OF

h i = h 3 = 30 Btu/hr/ft/OF

A = 6.5 X 10 ibm.sec/in

P = 0.84 X 10 lbf sec /in

J 9336 in.lbf/Btu

where U. s the maximum velocity in the lubricant film. The value of is approxi-

mated by

(xy) = ( )

and Y is computed by using the mean velocity, i.e., u = uo4 , since the

velocity is assumed linear between zero on J and u0 on Jz"

If all the dimensional quantities are converted to consistent dimensions

using (Btu, sec, in,0 F ), then the following values of coefficients are obtained

for use in Eqs (2) and (7):

19



ki k-3 6o2. KI ' to- .

K = 1.7+ X 10-

S57 87 x 10(2u
SQc in n

Table 4 shows four specific test conditions, which are the combinations of two

two velocities and two film thickness.

Table 4. Four tested cases for the values of Yand

Case No. H. (inches) u, (inch/sec) Y(Btu/sec/in /°F) F(Btu/in /sec)

1 0.001 9.550 0.0810 0.06427

2 0.001 47.750 0.0405 1.6070

3 0.0001 9.550 0.0810 6.4270

4 0.0001 47.750 0.0405 160.7000

In the present computations, two different sets of mesh subdivisions are used;

the first set of data with a coarse mesh has 77 nodes and 60 elements. The second

set of data with a fine mesh has 315 nodes and 280 elements. In the fine mesh.

we took four uniform rectangular elements in the lubricant ( 1Z ) and five uniform

rectangular elements in both bearing pad and collar (hand f13 ) along the y-axis,

and twenty elements along the x-axis.

The agreement between the computed temperatures obtained by a fine mesh and a

coarse mesh was good. Therefore only the results obtained by using the fine mesh

are shown in Fig 5 through 8. In this three dimensionial computer plot of the temperature

distribution, a total of 315 nodes were used with linear interpolation. It should

be noted here that the film thicknesses (i.e., 0.001 and 0.0001 inches) were stretched

20
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very much along the y-axis for better illustration in the compliter plots.

The results for all four cases show that the effect of the inlet temperature
0

(100 F is used here) is limited to a small local region around the inlet. This

result shows that there exists a very thin thermal boundary layer at the inlet (i.e.,

the initial layer in the time-dependent problem). This results is not surprising, since

the heat is generated only in the lubricant.

It is of interest to note that for all four cases, the temperature T at the

second node on the boundary J1 (or J, ) from the inlet ( F2U, x = 0 ) is lower than

that at the adjacent node inside the solids (i.e., flor Q 3 ). This means that

there is a small region of local backflow of heat flux. In other words, in this

region, the heat flux vector is pointing from the point in the solid to the lubricant,

even though the only heat generating source in this problem is in the lubricant region.

CONCLUDING REMARKS

From the numerical results presented for the first model lubrication problem,

we can conclude that the seemingly-unstable classical Galerkin method is uniformly

stable over the range of the Peclet number from 0.01 to 100. This stability is

problably a result of the subdomain of the parabolic equation being sandwiched between

two adjacent subdomains which are elliptic without a convective term in the heat trans-

fer equations. It appears that the elliptic type equations for the top and bottom

subdomains play a role in stablizing the numerical scheme even though we use the

classical Galerk n method which is equivalent to the centered finite difference

approximation. Ii. the second model problem, a local backflow of the heat flux and

the presence of the thermal boundary layer are illustrated. Future work should

include the convective term in the bearing collar where numerical stability may

not result using the present method, unless a proper weighting function is introduced
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in the inner product.
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